0 out of 464 challenges solved
The Catalan numbers are a sequence of natural numbers that have many applications in combinatorial mathematics. The nth Catalan number can be defined recursively as: \[ C(n) = \sum_{i=0}^{n-1} C(i) \cdot C(n-i-1), \text{ for } n > 0, \text{ and } C(0) = 1. \] Write a Python function `catalan_number(n)` that computes the nth Catalan number using recursion. #### Example Usage ```python [main.nopy] print(catalan_number(0)) # Output: 1 print(catalan_number(3)) # Output: 5 print(catalan_number(5)) # Output: 42 ``` #### Constraints - The input `n` will be a non-negative integer. - The function should use recursion to compute the result.
def catalan_number(n): """ Compute the nth Catalan number using recursion. Args: n (int): The index of the Catalan number to compute. Returns: int: The nth Catalan number. """ # Base case if n == 0: return 1 # Recursive case # Placeholder for the recursive computation pass