Code, compile, and run Scikit-Image programs online
# Basic image processing using Scikit-Image from skimage import io, color, filters import requests import matplotlib.pyplot as plt from PIL import Image from io import BytesIO import numpy as np # Fetch the image from the URL using requests url = 'https://images.unsplash.com/photo-1444464666168-49d633b86797?w=800&auto=format&fit=crop&q=60&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxzZWFyY2h8MXx8YmlyZHxlbnwwfHwwfHx8Mg%3D%3D' response = requests.get(url) image = Image.open(BytesIO(response.content)) # Convert the image to a NumPy array image_np = np.array(image) # Convert the image to grayscale gray_image = color.rgb2gray(image_np) # Apply a Gaussian filter to the image blurred_image = filters.gaussian(gray_image, sigma=1) # Detect edges using the Sobel filter edges = filters.sobel(blurred_image) # Display the original and processed images plt.figure(figsize=(10, 7)) plt.subplot(2, 2, 1) plt.title('Original Image') plt.imshow(image_np) plt.axis('off') plt.subplot(2, 2, 2) plt.title('Grayscale Image') plt.imshow(gray_image, cmap='gray') plt.axis('off') plt.subplot(2, 2, 3) plt.title('Blurred Image') plt.imshow(blurred_image, cmap='gray') plt.axis('off') plt.subplot(2, 2, 4) plt.title('Edge Detection') plt.imshow(edges, cmap='gray') plt.axis('off') plt.tight_layout() plt.show()