0 out of 464 challenges solved
### Problem Statement The Newman–Shanks–Williams (NSW) prime numbers are a sequence of numbers defined recursively as follows: - `NSW(0) = 1` - `NSW(1) = 1` - `NSW(n) = 2 * NSW(n-1) + NSW(n-2)` for `n > 1` Write a function `newman_prime(n)` that computes the nth Newman–Shanks–Williams prime number. ### Example Usage ```python [main.nopy] newman_prime(0) # Output: 1 newman_prime(1) # Output: 1 newman_prime(2) # Output: 3 newman_prime(3) # Output: 7 newman_prime(4) # Output: 17 newman_prime(5) # Output: 41 ```
def newman_prime(n): """ Calculate the nth Newman–Shanks–Williams prime number. Args: n (int): The index of the NSW prime number to compute. Returns: int: The nth NSW prime number. """ # Base cases if n == 0: return 1 if n == 1: return 1 # Recursive case return 2 * newman_prime(n - 1) + newman_prime(n - 2)