import matplotlib.pyplot as plt
# Constants
base_spd = 102
spd_buffs = 0.96 # 96%
# Function to calculate Aglaea_spd
def calculate_aglaea_spd(sunday_max_spd):
return (10000 / (100 - (10000 / sunday_max_spd))) - (base_spd * spd_buffs) + 0.1
# Function to calculate minimum_speed
def calculate_minimum_speed(sunday_spd):
return sunday_spd - (base_spd * 0.06)
# Range of Sunday_spd values
sunday_spd_values = range(160, 166)
# Lists to store results
aglaea_spd_values = []
condition_satisfied = []
minimum_speed_values = []
# Calculate values for each Sunday_spd
for sunday_spd in sunday_spd_values:
aglaea_spd = calculate_aglaea_spd(sunday_spd)
aglaea_spd_values.append(aglaea_spd)
# Check if the condition is satisfied
condition = sunday_spd < aglaea_spd + (base_spd * 0.06)
condition_satisfied.append(condition)
# Calculate minimum_speed
minimum_speed = calculate_minimum_speed(sunday_spd)
minimum_speed_values.append(minimum_speed)
# Plotting the results
plt.figure(figsize=(10, 6))
# Plot Aglaea_spd
plt.plot(sunday_spd_values, aglaea_spd_values, label='Aglaea_spd', marker='o')
# Plot minimum_speed
plt.plot(sunday_spd_values, minimum_speed_values, label='Minimum Speed', marker='x')
# Highlight where the condition is satisfied
for i, condition in enumerate(condition_satisfied):
if condition:
plt.scatter(sunday_spd_values[i], aglaea_spd_values[i], color='green', zorder=5)
else:
plt.scatter(sunday_spd_values[i], aglaea_spd_values[i], color='red', zorder=5)
# Add labels and title
plt.xlabel('Sunday_spd')
plt.ylabel('Speed')
plt.title('Aglaea_spd and Minimum Speed vs Sunday_spd')
plt.legend()
plt.grid(True)
# Show plot
plt.show()
Click Run or press shift + ENTER to run code