import pandas as pd data = {'Name': ['John', 'Jane', 'Sam'], 'Age': [25, 30, 35], 'City': ['New York', 'London', 'Paris']} df = pd.DataFrame(data) print(df)
Name Age City 0 John 25 New York 1 Jane 30 London 2 Sam 35 Paris
import pandas as pd data = [10,20,30,40,50] s = pd.Series(data) print(s[2])
30
import pandas as pd data= [10,20,30,40,50] s = pd.Series(data,index = ['A','B','C','D','E' ]) print(s['C'])
30
import pandas as pd data= [10,20,30,40,50] s = pd.Series(data) print(s[1:4])
1 20 2 30 3 40 dtype: int64
import pandas as pd data= [10,20,30,40,50] s = pd.Series(data) print(s[s > 30])
3 40 4 50 dtype: int64
import pandas as pd data= [10,20,30,40,50] index_labels =["A","B","C","D","E"] s = pd.Series(data,index=index_labels,dtype=int,name="myseries") print(s)
A 10 B 20 C 30 D 40 E 50 Name: myseries, dtype: int32
import pandas as pd data= [10,20,30,40,50] s=pd.Series(data) s[1]=100 print(s)
0 10 1 100 2 30 3 40 4 50 dtype: int64
import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 1 : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) print(df)
Name Age 1 0 John 25 New York 1 Jane 30 London 2 Sam 35 Paris
import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data, columns=['Name','Age','city']) print(df)
Name Age city 0 John 25 NaN 1 Jane 30 NaN 2 Sam 35 NaN
import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) print(df['Name'])
0 John 1 Jane 2 Sam Name: Name, dtype: object
# ("Indexing Rows by Label:") import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) print(df.loc[1])
Name Jane Age 30 City London Name: 1, dtype: object
# Indexing rows by integer index. import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) print(df.iloc[2])
Name Sam Age 35 City Paris Name: 2, dtype: object
# Indexing with Conditions import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) rows =df[df['Age'] > 30] print(rows)
Name Age City 2 Sam 35 Paris
# Slicing Rows import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) rows = df[1:3] print(rows)
Name Age City 1 Jane 30 London 2 Sam 35 Paris
import pandas as pd data = { 'Name': ['John', 'Jane', 'Sam'], 'Age' : [25, 30, 35], 'City' : ['New York', 'London', 'Paris'] } df = pd.DataFrame(data) rows = df[ : , 1: ] print(rows)
line 8, in <module> rows = df[ : , 1: ] ~~^^^^^^^^^^ File "/lib/python3.12/site-packages/pandas/core/frame.py", line 4090, in __getitem__ indexer = self.columns.get_loc(key) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/lib/python3.12/site-packages/pandas/core/indexes/base.py", line 3808, in get_loc raise InvalidIndexError(key) pandas.errors.InvalidIndexError: (slice(None, None, None), slice(1, None, None))