import pandas as pd
data = {'Name': ['John', 'Jane', 'Sam'],
'Age': [25, 30, 35],
'City': ['New York', 'London', 'Paris']}
df = pd.DataFrame(data)
print(df)Name Age City 0 John 25 New York 1 Jane 30 London 2 Sam 35 Paris
import pandas as pd data = [10,20,30,40,50] s = pd.Series(data) print(s[2])
30
import pandas as pd data= [10,20,30,40,50] s = pd.Series(data,index = ['A','B','C','D','E' ]) print(s['C'])
30
import pandas as pd data= [10,20,30,40,50] s = pd.Series(data) print(s[1:4])
1 20 2 30 3 40 dtype: int64
import pandas as pd data= [10,20,30,40,50] s = pd.Series(data) print(s[s > 30])
3 40 4 50 dtype: int64
import pandas as pd data= [10,20,30,40,50] index_labels =["A","B","C","D","E"] s = pd.Series(data,index=index_labels,dtype=int,name="myseries") print(s)
A 10 B 20 C 30 D 40 E 50 Name: myseries, dtype: int32
import pandas as pd data= [10,20,30,40,50] s=pd.Series(data) s[1]=100 print(s)
0 10 1 100 2 30 3 40 4 50 dtype: int64
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
1 : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
print(df)Name Age 1 0 John 25 New York 1 Jane 30 London 2 Sam 35 Paris
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data, columns=['Name','Age','city'])
print(df)Name Age city 0 John 25 NaN 1 Jane 30 NaN 2 Sam 35 NaN
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
print(df['Name'])0 John 1 Jane 2 Sam Name: Name, dtype: object
# ("Indexing Rows by Label:")
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
print(df.loc[1])Name Jane Age 30 City London Name: 1, dtype: object
# Indexing rows by integer index.
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
print(df.iloc[2])Name Sam Age 35 City Paris Name: 2, dtype: object
# Indexing with Conditions
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
rows =df[df['Age'] > 30]
print(rows)Name Age City 2 Sam 35 Paris
# Slicing Rows
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
rows = df[1:3]
print(rows)Name Age City 1 Jane 30 London 2 Sam 35 Paris
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Sam'],
'Age' : [25, 30, 35],
'City' : ['New York', 'London', 'Paris']
}
df = pd.DataFrame(data)
rows = df[ : , 1: ]
print(rows)line 8, in <module>
rows = df[ : , 1: ]
~~^^^^^^^^^^
File "/lib/python3.12/site-packages/pandas/core/frame.py", line 4090, in __getitem__
indexer = self.columns.get_loc(key)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lib/python3.12/site-packages/pandas/core/indexes/base.py", line 3808, in get_loc
raise InvalidIndexError(key)
pandas.errors.InvalidIndexError: (slice(None, None, None), slice(1, None, None))