import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Example DataFrame data = { 'Product_Categroy': ['Electronics', 'Furniture', 'Clothing', 'Electronics', 'Furniture', 'Clothing'], 'Sales': [1000, 1500, 1200, 1100, 1400, 1300], 'Region': ['North', 'North', 'North', 'South', 'South', 'South'] } df = pd.DataFrame(data) def plot_avg_sales_regionwise(): sns.set_theme(style="whitegrid") # Set a theme ax = sns.barplot(x='Product_Categroy', y='Sales', hue='Region', data=df, palette="pastel", ci=None) # No error bars ax.set_title("Average Sales by Product Category and Region") ax.set_xlabel("Product Category") ax.set_ylabel("Average Sales") ax.legend(title="Region") plt.xticks(rotation=45) # Rotate x-axis labels for better readability plt.tight_layout() # Adjust layout to prevent overlapping plt.show() plot_avg_sales_regionwise()
script.py:16: FutureWarning: The `ci` parameter is deprecated. Use `errorbar=None` for the same effect. ax = sns.barplot(x='Product_Categroy', y='Sales', hue='Region', data=df, palette="pastel", ci=None) # No error bars
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Example DataFrame with relevant categories data = { 'Product_Category': ['Category B', 'Category A', 'Category C', 'Category B', 'Category A', 'Category C'], 'Sales': [1000, 1500, 1200, 1100, 1400, 1300], 'Region': ['North', 'North', 'North', 'South', 'South', 'South'] } df = pd.DataFrame(data) def plot_avg_sales_regionwise(): sns.barplot(x='Product_Category', y='Sales', hue='Region', data=df, palette="pastel", # Use a pastel color palette ci=None, # Remove error bars order=['Category B', 'Category A', 'Category C'] # Custom order ) plt.title("Average Sales by Product Category and Region") plt.xlabel("Product Category") plt.ylabel("Average Sales") plt.xticks(rotation=45) # Rotate x-axis labels plt.show() plot_avg_sales_regionwise()
script.py:15: FutureWarning: The `ci` parameter is deprecated. Use `errorbar=None` for the same effect. sns.barplot(x='Product_Category',