import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Example DataFrame
data = {
'Product_Categroy': ['Electronics', 'Furniture', 'Clothing', 'Electronics', 'Furniture', 'Clothing'],
'Sales': [1000, 1500, 1200, 1100, 1400, 1300],
'Region': ['North', 'North', 'North', 'South', 'South', 'South']
}
df = pd.DataFrame(data)
def plot_avg_sales_regionwise():
sns.set_theme(style="whitegrid") # Set a theme
ax = sns.barplot(x='Product_Categroy', y='Sales', hue='Region', data=df, palette="pastel", ci=None) # No error bars
ax.set_title("Average Sales by Product Category and Region")
ax.set_xlabel("Product Category")
ax.set_ylabel("Average Sales")
ax.legend(title="Region")
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent overlapping
plt.show()
plot_avg_sales_regionwise()script.py:16: FutureWarning: The `ci` parameter is deprecated. Use `errorbar=None` for the same effect. ax = sns.barplot(x='Product_Categroy', y='Sales', hue='Region', data=df, palette="pastel", ci=None) # No error bars
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Example DataFrame with relevant categories
data = {
'Product_Category': ['Category B', 'Category A', 'Category C', 'Category B', 'Category A', 'Category C'],
'Sales': [1000, 1500, 1200, 1100, 1400, 1300],
'Region': ['North', 'North', 'North', 'South', 'South', 'South']
}
df = pd.DataFrame(data)
def plot_avg_sales_regionwise():
sns.barplot(x='Product_Category',
y='Sales',
hue='Region',
data=df,
palette="pastel", # Use a pastel color palette
ci=None, # Remove error bars
order=['Category B', 'Category A', 'Category C'] # Custom order
)
plt.title("Average Sales by Product Category and Region")
plt.xlabel("Product Category")
plt.ylabel("Average Sales")
plt.xticks(rotation=45) # Rotate x-axis labels
plt.show()
plot_avg_sales_regionwise()script.py:15: FutureWarning: The `ci` parameter is deprecated. Use `errorbar=None` for the same effect. sns.barplot(x='Product_Category',