0 out of 464 challenges solved
The Eulerian number \( A(n, m) \) is a mathematical concept that counts the number of permutations of the numbers \( 1, 2, \ldots, n \) in which exactly \( m \) elements are greater than the previous element. It can be defined recursively as: \[ A(n, m) = (n - m) \cdot A(n-1, m-1) + (m + 1) \cdot A(n-1, m) \] with the base cases: \[ A(n, m) = 0 \text{ if } m \geq n \text{ or } n = 0 \] \[ A(n, 0) = 1 \text{ for all } n > 0 \] Write a function `eulerian_num(n, m)` that computes the Eulerian number \( A(n, m) \) using the recursive definition. #### Example Usage ```python [main.nopy] print(eulerian_num(3, 1)) # Output: 4 print(eulerian_num(4, 1)) # Output: 11 print(eulerian_num(5, 3)) # Output: 26 ``` #### Constraints - The function should handle inputs where \( n \) and \( m \) are non-negative integers. - The function should use recursion to compute the result.
def eulerian_num(n, m): """ Calculate the Eulerian number A(n, m) using its recursive definition. Args: n (int): The number of elements. m (int): The number of ascents. Returns: int: The Eulerian number A(n, m). """ # Base cases if m >= n or n == 0: return 0 if m == 0: return 1 # Recursive calculation # Placeholder for the recursive formula pass