0 out of 464 challenges solved
Write a Python function `harmonic_sum(n)` that calculates the harmonic sum of the first `n` terms. The harmonic sum is defined as: \[ H(n) = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \] #### Example Usage ```python [main.nopy] print(harmonic_sum(7)) # Output: 2.5928571428571425 print(harmonic_sum(4)) # Output: 2.083333333333333 print(harmonic_sum(19)) # Output: 3.547739657143682 ``` #### Constraints - The input `n` will be a positive integer. - The function should use recursion to calculate the harmonic sum.
def harmonic_sum(n): """ Calculate the harmonic sum of the first n terms. Args: n (int): The number of terms to include in the harmonic sum. Returns: float: The harmonic sum of the first n terms. """ # Base case: if n is 1, return 1 # Recursive case: add 1/n to the harmonic sum of (n-1) pass