0 out of 464 challenges solved

Sum of Binomial Products

Write a Python function to calculate the sum of the product of consecutive binomial coefficients for a given integer `n`.

The binomial coefficient \( C(n, k) \) is defined as:

\[
C(n, k) = \frac{n!}{k! \cdot (n-k)!}
\]

The task is to compute the sum of the product of consecutive binomial coefficients for a given `n`:

\[
\text{Sum} = C(n, 0) \cdot C(n, 1) + C(n, 1) \cdot C(n, 2) + \ldots + C(n, n-1) \cdot C(n, n)
\]

#### Example Usage
```python [main.nopy]
sum_of_binomial_products(3)  # Output: 15
sum_of_binomial_products(4)  # Output: 56
sum_of_binomial_products(1)  # Output: 1
```

#### Constraints
- The input `n` will be a non-negative integer.
- The function should handle edge cases like `n = 0` or `n = 1` gracefully.
def binomial_coefficient(n, k):
    """
    Calculate the binomial coefficient C(n, k).
    """
    # Placeholder for the binomial coefficient calculation
    pass

def sum_of_binomial_products(n):
    """
    Calculate the sum of the product of consecutive binomial coefficients for a given n.
    """
    # Placeholder for the sum of products calculation
    pass