0 out of 464 challenges solved
Write a Python function to calculate the sum of the product of consecutive binomial coefficients for a given integer `n`. The binomial coefficient \( C(n, k) \) is defined as: \[ C(n, k) = \frac{n!}{k! \cdot (n-k)!} \] The task is to compute the sum of the product of consecutive binomial coefficients for a given `n`: \[ \text{Sum} = C(n, 0) \cdot C(n, 1) + C(n, 1) \cdot C(n, 2) + \ldots + C(n, n-1) \cdot C(n, n) \] #### Example Usage ```python [main.nopy] sum_of_binomial_products(3) # Output: 15 sum_of_binomial_products(4) # Output: 56 sum_of_binomial_products(1) # Output: 1 ``` #### Constraints - The input `n` will be a non-negative integer. - The function should handle edge cases like `n = 0` or `n = 1` gracefully.
def binomial_coefficient(n, k): """ Calculate the binomial coefficient C(n, k). """ # Placeholder for the binomial coefficient calculation pass def sum_of_binomial_products(n): """ Calculate the sum of the product of consecutive binomial coefficients for a given n. """ # Placeholder for the sum of products calculation pass