import matplotlib.pyplot as plt # Sample data x = [1, 2, 3, 4, 5] y = [10, 14, 19, 25, 30] # Basic scatter plot plt.scatter(x, y) # Display the plot plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Basic Scatter Plot') plt.show()
import matplotlib.pyplot as plt # Sample data x = [1, 2, 3, 4, 5] y = [10, 14, 19, 25, 30] # Scatter plot with custom marker colors plt.scatter(x, y, c='red') # Display the plot plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Scatter Plot with Custom Marker Color') plt.show()
import matplotlib.pyplot as plt # Sample data x = [1, 2, 3, 4, 5] y = [10, 14, 19, 25, 30] # Scatter plot with custom marker size plt.scatter(x, y, s=200) # Size of markers set to 200 # Display the plot plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Scatter Plot with Custom Marker Size') plt.show()
import matplotlib.pyplot as plt # Sample data x = [1, 2, 3, 4, 5] y = [10, 14, 19, 25, 30] # Scatter plot with custom marker style plt.scatter(x, y, marker='^') # Triangle-up markers # Display the plot plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Scatter Plot with Custom Marker Style') plt.show()
import matplotlib.pyplot as plt import numpy as np # Sample data - generating random data points using normal distribution np.random.seed(0) x = np.random.randn(1000) y = np.random.randn(1000) # Scatter plot with custom marker alpha plt.scatter(x, y, alpha=0.5) # Alpha set to 0.5 for partial transparency # Display the plot plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Scatter Plot with Custom Marker Alpha') plt.show()
import matplotlib.pyplot as plt import numpy as np # Sample data - generating random data points using normal distribution np.random.seed(0) x = np.random.randn(1000) y = np.random.randn(1000) colors = np.random.randn(1000) sizes = np.random.randint(10, 101, size=1000) # Scatter plot with multiple customizations plt.scatter(x, y, c=colors, cmap="viridis", s=sizes, marker='o', alpha=0.5) # Display the plot plt.xlabel('X-axis') plt.ylabel('Y-axis') plt.title('Scatter Plot with Multiple Customizations') plt.show()