import seaborn as sns import matplotlib.pyplot as plt import numpy as np # Generate random data data = np.random.randn(1000) # Create a histogram sns.histplot(data) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt import numpy as np # Generate random data data = np.random.randn(1000) # Create a histogram with a KDE sns.histplot(data, kde=True) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt import numpy as np # Generate random data data = np.random.randn(1000) # Create a histogram with a specific number of bins sns.histplot(data, bins=100) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt import numpy as np # Generate random data data = np.random.randn(1000) # Create a histogram sns.histplot(data) # Add a title and labels plt.title('Histogram of Random Data') plt.xlabel('Value') plt.ylabel('Frequency') # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt import numpy as np # Generate random data data = np.random.randn(1000) # Create a histogram with a specific color sns.histplot(data, color='purple') # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd # Create a DataFrame with random data df = pd.DataFrame({ 'A': np.random.randn(1000), 'B': np.random.randn(1000) }) # Create a histogram for column 'A' sns.histplot(df['A']) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('tips') # Create a histogram with labels and legend sns.histplot(data['total_bill'], kde=True, color='skyblue') plt.title('Distribution of Total Bill') plt.xlabel('Total Bill') plt.ylabel('Frequency') plt.legend(['Total Bill']) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('tips') # Create histograms for different subsets sns.histplot(data[data['sex'] == 'Male']['total_bill'], color='blue', label='Male', kde=True) sns.histplot(data[data['sex'] == 'Female']['total_bill'], color='pink', label='Female', kde=True) # Add labels and legend plt.title('Total Bill Distribution by Gender') plt.xlabel('Total Bill') plt.ylabel('Frequency') plt.legend() # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('titanic') # Create a histogram for a discrete dataset sns.histplot(data['pclass'], discrete=True) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('tips') # Create a cumulative histogram sns.histplot(data['total_bill'], cumulative=True) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('tips') # Create a histogram with a logarithmic x-axis sns.histplot(data['total_bill'], log_scale=(True, False)) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('tips') # Create a multivariate histogram with hue sns.histplot(data=data, x='total_bill', hue='time', element='step', stat='density', common_norm=False) # Add labels and title plt.title('Total Bill Distribution by Time of Day') plt.xlabel('Total Bill') plt.ylabel('Density') # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('tips') # Create a jointplot sns.jointplot(data=data, x='total_bill', y='tip', kind='hist', marginal_kws=dict(bins=30, fill=True)) # Add a title plt.suptitle('Joint Distribution of Total Bill and Tip', y=1.02) # Show the plot plt.show()
import seaborn as sns import matplotlib.pyplot as plt # Load a sample dataset data = sns.load_dataset('iris') # Create a pairplot sns.pairplot(data=data, hue='species', diag_kind='hist') # Show the plot plt.show()