This example demonstrates how to use the HoloViews and Panel libraries to create an interactive crossfilter plot.
# Source: https://holoviews.org/gallery/apps/bokeh/crossfilter.html import holoviews as hv import panel as pn import panel.widgets as pnw from bokeh.sampledata.autompg import autompg hv.extension("bokeh") df = autompg.copy() ORIGINS = ['North America', 'Europe', 'Asia'] # data cleanup df.origin = [ORIGINS[x-1] for x in df.origin] df['mfr'] = [x.split()[0] for x in df.name] df.loc[df.mfr=='chevy', 'mfr'] = 'chevrolet' df.loc[df.mfr=='chevroelt', 'mfr'] = 'chevrolet' df.loc[df.mfr=='maxda', 'mfr'] = 'mazda' df.loc[df.mfr=='mercedes-benz', 'mfr'] = 'mercedes' df.loc[df.mfr=='toyouta', 'mfr'] = 'toyota' df.loc[df.mfr=='vokswagen', 'mfr'] = 'volkswagen' df.loc[df.mfr=='vw', 'mfr'] = 'volkswagen' del df['name'] columns = sorted(df.columns) discrete = [x for x in columns if df[x].dtype == object] continuous = [x for x in columns if x not in discrete] quantileable = [x for x in continuous if len(df[x].unique()) > 20] x = pnw.Select(name='X-Axis', value='mpg', options=quantileable) y = pnw.Select(name='Y-Axis', value='hp', options=quantileable) size = pnw.Select(name='Size', value='weight', options=['None'] + quantileable) color = pnw.Select(name='Color', value='displ', options=['None'] + quantileable) @pn.depends(x.param.value, y.param.value, color.param.value, size.param.value) def create_figure(x, y, color, size): opts = dict(cmap='rainbow', width=800, height=600, line_color='black') if color != 'None': opts['color'] = color if size != 'None': opts['size'] = hv.dim(size).norm()*20 return hv.Points(df, [x, y], label="%s vs %s" % (x.title(), y.title())).opts(**opts) widgets = pn.WidgetBox(x, y, color, size, width=200) pn.Row(widgets, create_figure).servable()